Adopting green options

Erika Schelby
Friday, Jun 14, 2024

In June 2024, the IEA released a report, “COP28: Tripling Renewable Capacity Pledge,” finding that few of the nearly 150 countries that, in December 2023, agreed to triple renewable energy outputs by 2030 have taken meaningful action to meet that goal. Heymi Bahar, a senior energy analyst at the IEA and co-author of the report, told the Guardian that outdated electricity grids hamper progress, and governments must upgrade these old systems to accept clean energy. “Countries have been allocating lots of support to renewables, but the grid has been forgotten,” Bahar said. “Regulatory action is needed.

So here we are, knee-deep in contradictions. Having gone through the hottest year on record, with many renewable energy sources available to reduce the use of fossil fuels, we have to face reality: This clean electricity has no place to go. We must wait years for our outdated and inadequate power grids to be accepted by local and regional authorities and installed. As climate journalist Eric Roston noted on Bloomberg News in February 2024, “[A]ll the wind turbines and solar arrays in the world can’t overtake fossil energy if they don’t plug into anything.”

Not only was 2023 the hottest year in recorded history, but it also started with extremely high-temperature readings. Climatologist Maximiliano Herrera watches extreme temperatures around the world. Herrera said that during the first half of February 2024, monthly heat records were broken in 140 countries, primarily during the summer in the southern hemisphere and the global north. Compounding the problem, the current El Nino event may generate “record-breaking temperatures from the Amazon to Alaska” throughout 2024, Damian Carrington reported in the Guardian.

For example, the American Southwest, known for its desert climate, has been one of the world’s regions plagued by long-lasting and scorching temperatures. According to NASA’s Earth Observatory, Phoenix, Arizona, trapped under a heat dome, suffered through 27 days of extreme readings of 110 F. And El Paso, Texas, located on the Rio Grande just south of the New Mexico state line, was sizzling for 42 days of hellish highs at or above 100 F.

Once you have languished for weeks trapped under such a heat dome, you understand perfectly well that heat stress is hazardous. Heat stroke, respiratory and cardiac emergencies, and chronic disease complications lead to spikes in hospitalizations and can be fatal. Even if serious problems are avoided, extreme heat will rob even the healthiest individuals of strength and initiative.

Heatwaves are regarded as ‘silent killers’. In the US, they claim more lives than other climate-related disasters. Europe lost an estimated 61,000 people to extreme temperatures in 2022, and Spain’s Seville became the first city in the world to name a heatwave, calling it ‘Cerberus.’ Elsewhere, Australia’s Climate Council proposed that heatwaves should have names “similar to tropical cyclones, as a way of helping to avoid more deaths.”

Not surprisingly, extreme weather events have amplified people’s anxiety and feelings of exhaustion around the world. But humans aren’t the only ones negatively affected by the increased temperatures. Wildlife is also being impacted, with some species being pushed toward extinction.

“We often think that climate change may cause a mass mortality event in the future, but this study tells us that the change in climate that has already occurred is too hot, and in certain areas, [nonhuman] animals can’t tolerate the warming and drying that has already occurred,” said Eric Riddell, a physiological ecologist at the University of California at Berkeley and lead author of a 2020 study that found that climate change-related warming is behind the collapse of bird populations in the Mojave Desert over the past century.

Amid these worrisome developments, the IEA found that “global growth in emissions was lower than feared, despite gas-to-coal switching in many countries. Increased deployment of clean energy technologies such as renewables, electric vehicles, and heat pumps helped prevent an additional 550 Mt in CO2 emissions.”

Heat pumps are viewed as one solution to heat waves. Global sales of heat pumps increased by 13 percent in 2020-2021, and between 70 and 80 percent of energy delivered by this technology is renewable.

“Heat pumps offer an energy-efficient alternative to furnaces and air conditioners for all climates,” according to the US Department of Energy. “Heat pumps move heat from the cool outdoors into your warm[er] house during the heating season. During the cooling season, heat pumps move heat from your house into the outdoors. Because they transfer heat rather than generate heat, heat pumps can efficiently provide comfortable temperatures for your home.”

This technology still heats the indoors even when outdoor temperatures dip to minus 15 F.

Humans began experimenting with cooling systems in ancient China, India, Egypt, and Iran early. Initially, enslaved people or servants were used to fan the air over water jars for many hours daily. Leonardo da Vinci also tinkered with a cooling system. At the same time, the Spaniards used grass or cactus fibers wrapped over water jars to better cope with the hot season in America’s Southwest. Native Americans built thick-walled adobe (mud brick) pueblo homes that stayed relatively cool in summer and warmer in winter. They worked with shade whenever possible.

Gradually, things evolved. Oscar Palmer of Phoenix, Arizona, constructed the first evaporative cooler in 1908. By 1936, Phoenix had become the major producer of these coolers, and people in the arid states of the American West relied on them. They used water, pads, and motorized fans to cool the indoor air by up to 20 degrees Fahrenheit. However, with global warming, temperatures are rising, and these devices fail when heat readings are in the upper 90s and above. Combine high humidity during the monsoon season with excessive heat, and evaporative coolers will become useless.

Switching to residential air conditioning, however, has a high carbon footprint. The newer technology of electric heat pumps offers far more efficient solutions, both for new and older – existing homes. Heat pumps use electricity only as an addition to natural sources found in the air, ground, or water – which means they produce more heat (and cooling) than they consume. This makes them highly energy efficient.

Ductless Mini-Split Heat Pumps, for example, are a good choice for existing ductless homes. They provide flexibility and can cool just one room if you are on a budget: this can be your protective oasis during heat waves and avoid the expense and negative environmental impact of cooling an entire house. During the winter months, these pumps also provide heating. Once expertly installed, they are simple to handle and maintain.

Excerpted: ‘Navigating the Energy

Transition: Renewables Abound, but Grid Challenges Loom’.